Terms in diachronic text corpora may exhibit a high degree of semantic dynamics that is only partially captured by the common notion of semantic change. The new measure of context volatility that we propose models the degree by which terms change context in a text collection over time. The computation of context volatility for a word relies on the significance-values of its co-occurrent terms and the corresponding co-occurrence ranks in sequential time spans. We define a baseline and present an efficient computational approach in order to overcome problems related to computational issues in the data structure. Results are evaluated both, on synthetic documents that are used to simulate contextual changes, and a real example based on British newspaper texts.