Breast cancer is one of the leading causes of cancer mortality. Breast cancer patients in developing countries, especially sub-Saharan Africa, South Asia, and South America, suffer from the highest mortality rate in the world. One crucial factor contributing to the global disparity in mortality rate is long delay of diagnosis due to a severe shortage of trained pathologists, which consequently has led to a large proportion of late-stage presentation at diagnosis. The delay between the initial development of symptoms and the receipt of a diagnosis could stretch upwards 15 months. To tackle this critical healthcare disparity, this research has developed a deep learning-based diagnosis system for metastatic breast cancer that can achieve high diagnostic accuracy as well as computational efficiency. Based on our evaluation, the MobileNetV2-based diagnostic model outperformed the more complex VGG16, ResNet50 and ResNet101 models in diagnostic accuracy, model generalization, and model training efficiency. The visual comparisons between the model prediction and ground truth have demonstrated that the MobileNetV2 diagnostic models can identify very small cancerous nodes embedded in a large area of normal cells which is challenging for manual image analysis. Equally Important, the light weighted MobleNetV2 models were computationally efficient and ready for mobile devices or devices of low computational power. These advances empower the development of a resource-efficient and high performing AI-based metastatic breast cancer diagnostic system that can adapt to under-resourced healthcare facilities in developing countries. This research provides an innovative technological solution to address the long delays in metastatic breast cancer diagnosis and the consequent disparity in patient survival outcome in developing countries.