The accurate syllabification of words plays a vital role in various Natural Language Processing applications. Syllabification is a versatile linguistic tool with applications in linguistic research, language technology, education, and various fields where understanding and processing language is essential. In this paper, we present a comprehensive approach to syllabification for the Uzbek language, including rule-based techniques and machine learning algorithms. Our rule-based approach utilizes advanced methods for dividing words into syllables, generating hyphenations for line breaks and count of syllables. Additionally, we collected a dataset for evaluating and training using machine learning algorithms comprising word-syllable mappings, hyphenations, and syllable counts to predict syllable counts as well as for the evaluation of the proposed model. Our results demonstrate the effectiveness and efficiency of both approaches in achieving accurate syllabification. The results of our experiments show that both approaches achieved a high level of accuracy, exceeding 99%. This study provides valuable insights and recommendations for future research on syllabification and related areas in not only the Uzbek language itself, but also in other closely-related Turkic languages with low-resource factor.