Electromyography (EMG)--based computational musculoskeletal modeling is a non-invasive method for studying musculotendon function, human movement, and neuromuscular control, providing estimates of internal variables like muscle forces and joint torques. However, EMG signals from deeper muscles are often challenging to measure by placing the surface EMG electrodes and unfeasible to measure directly using invasive methods. The restriction to the access of EMG data from deeper muscles poses a considerable obstacle to the broad adoption of EMG-driven modeling techniques. A strategic alternative is to use an estimation algorithm to approximate the missing EMG signals from deeper muscle. A similar strategy is used in physics-informed deep learning, where the features of physical systems are learned without labeled data. In this work, we propose a hybrid deep learning algorithm, namely the neural musculoskeletal model (NMM), that integrates physics-informed and data-driven deep learning to approximate the EMG signals from the deeper muscles. While data-driven modeling is used to predict the missing EMG signals, physics-based modeling engraves the subject-specific information into the predictions. Experimental verifications on five test subjects are carried out to investigate the performance of the proposed hybrid framework. The proposed NMM is validated against the joint torque computed from 'OpenSim' software. The predicted deep EMG signals are also compared against the state-of-the-art muscle synergy extrapolation (MSE) approach, where the proposed NMM completely outperforms the existing MSE framework by a significant margin.