Automatic image-based severity estimation is an important task in computer-aided diagnosis. Severity estimation by deep learning requires a large amount of training data to achieve a high performance. In general, severity estimation uses training data annotated with discrete (i.e., quantized) severity labels. Annotating discrete labels is often difficult in images with ambiguous severity, and the annotation cost is high. In contrast, relative annotation, in which the severity between a pair of images is compared, can avoid quantizing severity and thus makes it easier. We can estimate relative disease severity using a learning-to-rank framework with relative annotations, but relative annotation has the problem of the enormous number of pairs that can be annotated. Therefore, the selection of appropriate pairs is essential for relative annotation. In this paper, we propose a deep Bayesian active learning-to-rank that automatically selects appropriate pairs for relative annotation. Our method preferentially annotates unlabeled pairs with high learning efficiency from the model uncertainty of the samples. We prove the theoretical basis for adapting Bayesian neural networks to pairwise learning-to-rank and demonstrate the efficiency of our method through experiments on endoscopic images of ulcerative colitis on both private and public datasets. We also show that our method achieves a high performance under conditions of significant class imbalance because it automatically selects samples from the minority classes.