Previous feed-forward architectures of recently proposed deep super-resolution networks learn the features of low-resolution inputs and the non-linear mapping from those to a high-resolution output. However, this approach does not fully address the mutual dependencies of low- and high-resolution images. We propose Deep Back-Projection Networks (DBPN), the winner of two image super-resolution challenges (NTIRE2018 and PIRM2018), that exploit iterative up- and down-sampling layers. These layers are formed as a unit providing an error feedback mechanism for projection errors. We construct mutually-connected up- and down-sampling units each of which represents different types of image degradation and high-resolution components. We also show that extending this idea to several variants applying the latest deep network trends, such as recurrent network, dense connection, and residual learning, to improve the performance. The experimental results yield superior results and in particular establishing new state-of-the-art results across multiple data sets, especially for large scaling factors such as 8x.