This study investigates machine translation between related languages i.e., languages within the same family that share similar linguistic traits such as word order and lexical similarity. Machine translation through few-shot prompting leverages a small set of translation pair examples to generate translations for test sentences. This requires the model to learn how to generate translations while simultaneously ensuring that token ordering is maintained to produce a fluent and accurate translation. We propose that for related languages, the task of machine translation can be simplified by leveraging the monotonic alignment characteristic of such languages. We introduce a novel approach of few-shot prompting that decomposes the translation process into a sequence of word chunk translations. Through evaluations conducted on multiple related language pairs across various language families, we demonstrate that our novel approach of decomposed prompting surpasses multiple established few-shot baseline models, thereby verifying its effectiveness. For example, our model outperforms the strong few-shot prompting BLOOM model with an average improvement of 4.2 chrF++ scores across the examined languages.