This paper investigates the task of tracking multiple objects in clutter under a distributed multi-sensor network with time-varying connectivity. Designed with the same objective as the centralised variational multi-object tracker, the proposed method achieves optimal decentralised fusion in performance with local processing and communication with only neighboring sensors. A key innovation is the decentralised construction of a locally maximised evidence lower bound, which greatly reduces the information required for communication. Our decentralised natural gradient descent variational multi-object tracker, enhanced with the gradient tracking strategy and natural gradients that adjusts the direction of traditional gradients to the steepest, shows rapid convergence. Our results verify that the proposed method is empirically equivalent to the centralised fusion in tracking accuracy, surpasses suboptimal fusion techniques with comparable costs, and achieves much lower communication overhead than the consensus-based variational multi-object tracker.