Distribution shifts widely exist in medical images acquired from different medical centers, hindering the deployment of semantic segmentation models trained on data from one center (source domain) to another (target domain). While unsupervised domain adaptation (UDA) has shown significant promise in mitigating these shifts, it poses privacy risks due to sharing data between centers. To facilitate adaptation while preserving data privacy, source-free domain adaptation (SFDA) and test-time adaptation (TTA) have emerged as effective paradigms, relying solely on target domain data. However, the scenarios currently addressed by SFDA and TTA are limited, making them less suitable for clinical applications. In a more realistic clinical scenario, the pre-trained model is deployed in a medical centre to assist with clinical tasks during the day and rest at night. During the daytime process, TTA can be employed to enhance inference performance. During the nighttime process, after collecting the test data from the day, the model can be fine-tuned utilizing SFDA to further adapt to the target domain. With above insights, we propose a novel adaptation framework called Day-Night Adaptation (DyNA). This framework adapts the model to the target domain through day-night loops without requiring access to source data. Specifically, we implement distinct adaptation strategies for daytime and nighttime to better meet the demands of clinical settings. During the daytime, model parameters are frozen, and a specific low-frequency prompt is trained for each test sample. Additionally, we construct a memory bank for prompt initialization and develop a warm-up mechanism to enhance prompt training. During nighttime, we integrate a global student model into the traditional teacher-student self-training paradigm to fine-tune the model while ensuring training stability...