Visual anomaly detection (AD) inherently faces significant challenges due to the scarcity of anomalous data. Although numerous works have been proposed to synthesize anomalous samples, the generated samples often lack authenticity or can only reflect the distribution of the available training data samples. In this work, we propose CUT: a Controllable, Universal and Training-free visual anomaly generation framework, which leverages the capability of Stable Diffusion (SD) in image generation to generate diverse and realistic anomalies. With CUT, we achieve controllable and realistic anomaly generation universally across both unseen data and novel anomaly types, using a single model without acquiring additional training effort. To demonstrate the effectiveness of our approach, we propose a Vision-Language-based Anomaly Detection framework (VLAD). By training the VLAD model with our generated anomalous samples, we achieve state-of-the-art performance on several benchmark anomaly detection tasks, highlighting the significant improvements enabled by our synthetic data.