Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. The crowds of smart devices offer opportunities to collectively sense and perform computing tasks in an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowdsensing data with differential privacy guarantees. Crowd-ML endows a crowdsensing system with an ability to learn classifiers or predictors online from crowdsensing data privately with minimal computational overheads on devices and servers, suitable for a practical and large-scale employment of the framework. We analyze the performance and the scalability of Crowd-ML, and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions.