This paper is proposed to efficiently provide a convex approximation for the probabilistic reachable set of a dynamic system in the face of uncertainties. When the uncertainties are not limited to bounded ones, it may be impossible to find a bounded reachable set of the system. Instead, we turn to find a probabilistic reachable set that bounds system states with confidence. A data-driven approach of Kernel Density Estimator (KDE) accelerated by Fast Fourier Transform (FFT) is customized to model the uncertainties and obtain the probabilistic reachable set efficiently. However, the irregular or non-convex shape of the probabilistic reachable set refrains it from practice. For the sake of real applications, we formulate an optimization problem as Mixed Integer Nonlinear Programming (MINLP) whose solution accounts for an optimal $n$-sided convex polygon to approximate the probabilistic reachable set. A heuristic algorithm is then developed to solve the MINLP efficiently while ensuring accuracy. The results of comprehensive case studies demonstrate the near-optimality, accuracy, efficiency, and robustness enjoyed by the proposed algorithm. The benefits of this work pave the way for its promising applications to safety-critical real-time motion planning of uncertain systems.