Utilizing vicinal space between the source and target domains is one of the recent unsupervised domain adaptation approaches. However, the problem of the equilibrium collapse of labels, where the source labels are dominant over the target labels in the predictions of vicinal instances, has never been addressed. In this paper, we propose an instance-wise minimax strategy that minimizes the entropy of high uncertainty instances in the vicinal space to tackle it. We divide the vicinal space into two subspaces through the solution of the minimax problem: contrastive space and consensus space. In the contrastive space, inter-domain discrepancy is mitigated by constraining instances to have contrastive views and labels, and the consensus space reduces the confusion between intra-domain categories. The effectiveness of our method is demonstrated on the public benchmarks, including Office-31, Office-Home, and VisDA-C, which achieve state-of-the-art performances. We further show that our method outperforms current state-of-the-art methods on PACS, which indicates our instance-wise approach works well for multi-source domain adaptation as well.