https://github.com/Aitical/DSwinIR.
Image restoration has witnessed significant advancements with the development of deep learning models. Although Transformer architectures have progressed considerably in recent years, challenges remain, particularly the limited receptive field in window-based self-attention. In this work, we propose DSwinIR, a Deformable Sliding window Transformer for Image Restoration. DSwinIR introduces a novel deformable sliding window self-attention that adaptively adjusts receptive fields based on image content, enabling the attention mechanism to focus on important regions and enhance feature extraction aligned with salient features. Additionally, we introduce a central ensemble pattern to reduce the inclusion of irrelevant content within attention windows. In this way, the proposed DSwinIR model integrates the deformable sliding window Transformer and central ensemble pattern to amplify the strengths of both CNNs and Transformers while mitigating their limitations. Extensive experiments on various image restoration tasks demonstrate that DSwinIR achieves state-of-the-art performance. For example, in image deraining, compared to DRSformer on the SPA dataset, DSwinIR achieves a 0.66 dB PSNR improvement. In all-in-one image restoration, compared to PromptIR, DSwinIR achieves over a 0.66 dB and 1.04 dB improvement on three-task and five-task settings, respectively. Pretrained models and code are available at our project