Benchmark contamination refers to the presence of test datasets in Large Language Model (LLM) pre-training or post-training data. Contamination can lead to inflated scores on benchmarks, compromising evaluation results and making it difficult to determine the capabilities of models. In this work, we study the contamination of popular multilingual benchmarks in LLMs that support multiple languages. We use the Black Box test to determine whether $7$ frequently used multilingual benchmarks are contaminated in $7$ popular open and closed LLMs and find that almost all models show signs of being contaminated with almost all the benchmarks we test. Our findings can help the community determine the best set of benchmarks to use for multilingual evaluation.