We prove that natural gradient descent, with respect to the parameters of a machine learning policy, admits a conjugate dynamical description consistent with evolution by natural selection. We characterize these conjugate dynamics as a locally optimal fit to the continuous-time replicator dynamics, and show that the Price equation applies to equivalence classes of functions belonging to a Hilbert space generated by the policy's architecture and parameters. We posit that "conjugate natural selection" intuitively explains the empirical effectiveness of natural gradient descent, while developing a useful analytic approach to the dynamics of machine learning.