In this work we investigate the computation of nonlinear eigenfunctions via the extinction profiles of gradient flows. We analyze a scheme that recursively subtracts such eigenfunctions from given data and show that this procedure yields a decomposition of the data into eigenfunctions in some cases as the 1-dimensional total variation, for instance. We discuss results of numerical experiments in which we use extinction profiles and the gradient flow for the task of spectral graph clustering as used, e.g., in machine learning applications.