Large Language Models (LLMs) have made significant strides in information acquisition. However, their overreliance on potentially flawed parametric knowledge leads to hallucinations and inaccuracies, particularly when handling long-tail, domain-specific queries. Retrieval Augmented Generation (RAG) addresses this limitation by incorporating external, non-parametric knowledge. Nevertheless, the retrieved long-context documents often contain noisy, irrelevant information alongside vital knowledge, negatively diluting LLMs' attention. Inspired by the supportive role of essential concepts in individuals' reading comprehension, we propose a novel concept-based RAG framework with the Abstract Meaning Representation (AMR)-based concept distillation algorithm. The proposed algorithm compresses the cluttered raw retrieved documents into a compact set of crucial concepts distilled from the informative nodes of AMR by referring to reliable linguistic features. The concepts explicitly constrain LLMs to focus solely on vital information in the inference process. We conduct extensive experiments on open-domain question-answering datasets to empirically evaluate the proposed method's effectiveness. The results indicate that the concept-based RAG framework outperforms other baseline methods, particularly as the number of supporting documents increases, while also exhibiting robustness across various backbone LLMs. This emphasizes the distilled concepts are informative for augmenting the RAG process by filtering out interference information. To the best of our knowledge, this is the first work introducing AMR to enhance the RAG, presenting a potential solution to augment inference performance with semantic-based context compression.