We study image inverse problems with invertible generative priors, specifically normalizing flow models. Our formulation views the solution as the Maximum a Posteriori (MAP) estimate of the image given the measurements. Our general formulation allows for non-linear differentiable forward operators and noise distributions with long-range dependencies. We establish theoretical recovery guarantees for denoising and compressed sensing under our framework. We also empirically validate our method on various inverse problems including compressed sensing with quantized measurements and denoising with dependent noise patterns.