Selecting the best classifier among the available ones is a difficult task, especially when only instances of one class exist. In this work we examine the notion of combining one-class classifiers as an alternative for selecting the best classifier. In particular, we propose two new one-class classification performance measures to weigh classifiers and show that a simple ensemble that implements these measures can outperform the most popular one-class ensembles. Furthermore, we propose a new one-class ensemble scheme, TUPSO, which uses meta-learning to combine one-class classifiers. Our experiments demonstrate the superiority of TUPSO over all other tested ensembles and show that the TUPSO performance is statistically indistinguishable from that of the hypothetical best classifier.