The development of technologies for causal inference with the privacy preservation of distributed data has attracted considerable attention in recent years. To address this issue, we propose a quasi-experiment based on data collaboration (DC-QE) that enables causal inference from distributed data with privacy preservation. Our method preserves the privacy of private data by sharing only dimensionality-reduced intermediate representations, which are individually constructed by each party. Moreover, our method can reduce both random errors and biases, whereas existing methods can only reduce random errors in the estimation of treatment effects. Through numerical experiments on both artificial and real-world data, we confirmed that our method can lead to better estimation results than individual analyses. With the spread of our method, intermediate representations can be published as open data to help researchers find causalities and accumulated as a knowledge base.