Total variation (TV) is a widely used function for regularizing imaging inverse problems that is particularly appropriate for images whose underlying structure is piecewise constant. TV regularized optimization problems are typically solved using proximal methods, but the way in which they are applied is constrained by the absence of a closed-form expression for the proximal operator of the TV function. A closed-form approximation of the TV proximal operator has previously been proposed, but its accuracy was not theoretically explored in detail. We address this gap by making several new theoretical contributions, proving that the approximation leads to a proximal operator of some convex function, that it always decreases the TV function, and that its error can be fully characterized and controlled with its scaling parameter. We experimentally validate our theoretical results on image denoising and sparse-view computed tomography (CT) image reconstruction.