The capability of Large Language Models (LLMs) to plan remains a topic of debate. Some critics argue that strategies to boost LLMs' reasoning skills are ineffective in planning tasks, while others report strong outcomes merely from training models on a planning corpus. This study reassesses recent strategies by developing an end-to-end LLM planner and employing diverse metrics for a thorough evaluation. We find that merely fine-tuning LLMs on a corpus of planning instances does not lead to robust planning skills, as indicated by poor performance on out-of-distribution test sets. At the same time, we find that various strategies, including Chain-of-Thought, do enhance the probability of a plan being executable. This indicates progress towards better plan quality, despite not directly enhancing the final validity rate. Among the strategies we evaluated, reinforcement learning with our novel `Longest Contiguous Common Subsequence' reward emerged as the most effective, contributing to both plan validity and executability. Overall, our research addresses key misconceptions in the LLM-planning literature; we validate incremental progress in plan executability, although plan validity remains a challenge. Hence, future strategies should focus on both these aspects, drawing insights from our findings.