The morphology of geological particles is crucial in determining its granular characteristics and assembly responses. In this paper, Metaball-function based solutions are proposed for morphological characterization and generation of three-dimensional realistic particles according to the X-ray Computed Tomography (XRCT) images. For characterization, we develop a geometric-based Metaball-Imaging algorithm. This algorithm can capture the main contour of parental particles with a series of non-overlapping spheres and refine surface-texture details through gradient search. Four types of particles, hundreds of samples, are applied for evaluations. The result shows good matches on key morphological indicators(i.e., volume, surface area, sphericity, circularity, corey-shape factor, nominal diameter and surface-equivalent-sphere diameter), confirming its characterization precision. For generation, we propose the Metaball Variational Autoencoder. Assisted by deep neural networks, this method can generate 3D particles in Metaball form, while retaining coessential morphological features with parental particles. Additionally, this method allows for control over the generated shapes through an arithmetic pattern, enabling the generation of particles with specific shapes. Two sets of XRCT images different in sample number and geometric features are chosen as parental data. On each training set, one thousand particles are generated for validations. The generation fidelity is demonstrated through comparisons of morphologies and shape-feature distributions between generated and parental particles. Examples are also provided to demonstrate controllability on the generated shapes. With Metaball-based simulations frameworks previously proposed by the authors, these methods have the potential to provide valuable insights into the properties and behavior of actual geological particles.