Despite the success of deep learning on many fronts especially image and speech, its application in text classification often is still not as good as a simple linear SVM on n-gram TF-IDF representation especially for smaller datasets. Deep learning tends to emphasize on sentence level semantics when learning a representation with models like recurrent neural network or recursive neural network, however from the success of TF-IDF representation, it seems a bag-of-words type of representation has its strength. Taking advantage of both representions, we present a model known as TDSM (Top Down Semantic Model) for extracting a sentence representation that considers both the word-level semantics by linearly combining the words with attention weights and the sentence-level semantics with BiLSTM and use it on text classification. We apply the model on characters and our results show that our model is better than all the other character-based and word-based convolutional neural network models by \cite{zhang15} across seven different datasets with only 1\% of their parameters. We also demonstrate that this model beats traditional linear models on TF-IDF vectors on small and polished datasets like news article in which typically deep learning models surrender.