Pinching Antennas (PAs) represent a revolutionary flexible antenna technology that leverages dielectric waveguides and electromagnetic coupling to mitigate large-scale path loss. This letter is the first to explore channel estimation for Pinching-Antenna SyStems (PASS), addressing their uniquely ill-conditioned and underdetermined channel characteristics. In particular, two efficient deep learning-based channel estimators are proposed. 1) PAMoE: This estimator incorporates dynamic padding, feature embedding, fusion, and mixture of experts (MoE) modules, which effectively leverage the positional information of PAs and exploit expert diversity. 2) PAformer: This Transformer-style estimator employs the self-attention mechanism to predict channel coefficients in a per-antenna manner, which offers more flexibility to adaptively deal with dynamic numbers of PAs in practical deployment. Numerical results demonstrate that 1) the proposed deep learning-based channel estimators outperform conventional methods and exhibit excellent zero-shot learning capabilities, and 2) PAMoE delivers higher channel estimation accuracy via MoE specialization, while PAformer natively handles an arbitrary number of PAs, trading self-attention complexity for superior scalability.