Gait recognition is a computer vision task that identifies individuals based on their walking patterns. Gait recognition performance is commonly evaluated by ranking a gallery of candidates and measuring the accuracy at the top Rank-$K$. Existing models are typically single-staged, i.e. searching for the probe's nearest neighbors in a gallery using a single global feature representation. Although these models typically excel at retrieving the correct identity within the top-$K$ predictions, they struggle when hard negatives appear in the top short-list, leading to relatively low performance at the highest ranks (e.g., Rank-1). In this paper, we introduce CarGait, a Cross-Attention Re-ranking method for gait recognition, that involves re-ordering the top-$K$ list leveraging the fine-grained correlations between pairs of gait sequences through cross-attention between gait strips. This re-ranking scheme can be adapted to existing single-stage models to enhance their final results. We demonstrate the capabilities of CarGait by extensive experiments on three common gait datasets, Gait3D, GREW, and OU-MVLP, and seven different gait models, showing consistent improvements in Rank-1,5 accuracy, superior results over existing re-ranking methods, and strong baselines.