This paper explores the challenges posed by aspect-based sentiment classification (ABSC) within pretrained language models (PLMs), with a particular focus on contextualization and hallucination issues. In order to tackle these challenges, we introduce CARBD-Ko (a Contextually Annotated Review Benchmark Dataset for Aspect-Based Sentiment Classification in Korean), a benchmark dataset that incorporates aspects and dual-tagged polarities to distinguish between aspect-specific and aspect-agnostic sentiment classification. The dataset consists of sentences annotated with specific aspects, aspect polarity, aspect-agnostic polarity, and the intensity of aspects. To address the issue of dual-tagged aspect polarities, we propose a novel approach employing a Siamese Network. Our experimental findings highlight the inherent difficulties in accurately predicting dual-polarities and underscore the significance of contextualized sentiment analysis models. The CARBD-Ko dataset serves as a valuable resource for future research endeavors in aspect-level sentiment classification.