https://github.com/syxvision/FDNet.
The task of Camouflaged Object Detection (COD) aims to accurately segment camouflaged objects that integrated into the environment, which is more challenging than ordinary detection as the texture between the target and background is visually indistinguishable. In this paper, we proposed a novel Feature Grafting and Distractor Aware network (FDNet) to handle the COD task. Specifically, we use CNN and Transformer to encode multi-scale images in parallel. In order to better explore the advantages of the two encoders, we design a cross-attention-based Feature Grafting Module to graft features extracted from Transformer branch into CNN branch, after which the features are aggregated in the Feature Fusion Module. A Distractor Aware Module is designed to explicitly model the two possible distractors in the COD task to refine the coarse camouflage map. We also proposed the largest artificial camouflaged object dataset which contains 2000 images with annotations, named ACOD2K. We conducted extensive experiments on four widely used benchmark datasets and the ACOD2K dataset. The results show that our method significantly outperforms other state-of-the-art methods. The code and the ACOD2K will be available at