We consider a budget-constrained bandit problem where each arm pull incurs a random cost, and yields a random reward in return. The objective is to maximize the total expected reward under a budget constraint on the total cost. The model is general in the sense that it allows correlated and potentially heavy-tailed cost-reward pairs that can take on negative values as required by many applications. We show that if moments of order $(2+\gamma)$ for some $\gamma > 0$ exist for all cost-reward pairs, $O(\log B)$ regret is achievable for a budget $B>0$. In order to achieve tight regret bounds, we propose algorithms that exploit the correlation between the cost and reward of each arm by extracting the common information via linear minimum mean-square error estimation. We prove a regret lower bound for this problem, and show that the proposed algorithms achieve tight problem-dependent regret bounds, which are optimal up to a universal constant factor in the case of jointly Gaussian cost and reward pairs.