https://github.com/liuzywen/COD
Camouflaged object detection intends to discover the concealed objects hidden in the surroundings. Existing methods follow the bio-inspired framework, which first locates the object and second refines the boundary. We argue that the discovery of camouflaged objects depends on the recurrent search for the object and the boundary. The recurrent processing makes the human tired and helpless, but it is just the advantage of the transformer with global search ability. Therefore, a dual-task interactive transformer is proposed to detect both accurate position of the camouflaged object and its detailed boundary. The boundary feature is considered as Query to improve the camouflaged object detection, and meanwhile the object feature is considered as Query to improve the boundary detection. The camouflaged object detection and the boundary detection are fully interacted by multi-head self-attention. Besides, to obtain the initial object feature and boundary feature, transformer-based backbones are adopted to extract the foreground and background. The foreground is just object, while foreground minus background is considered as boundary. Here, the boundary feature can be obtained from blurry boundary region of the foreground and background. Supervised by the object, the background and the boundary ground truth, the proposed model achieves state-of-the-art performance in public datasets.