Learning time-series representations for discriminative tasks has been a long-standing challenge. Current pre-training methods are limited in either unidirectional next-token prediction or randomly masked token prediction. We propose a novel architecture called Bidirectional Timely Generative Pre-trained Transformer (BiTimelyGPT), which pre-trains on time-series data by both next-token and previous-token predictions in alternating transformer layers. This pre-training task preserves original distribution and data shapes of the time-series. Additionally, the full-rank forward and backward attention matrices exhibit more expressive representation capabilities. Using biosignal data, BiTimelyGPT demonstrates superior performance in predicting neurological functionality, disease diagnosis, and physiological signs. By visualizing the attention heatmap, we observe that the pre-trained BiTimelyGPT can identify discriminative segments from time-series sequences, even more so after fine-tuning on the task.