Role-play in the Large Language Model (LLM) is a crucial technique that enables models to adopt specific perspectives, enhancing their ability to generate contextually relevant and accurate responses. By simulating different roles, theis approach improves reasoning capabilities across various NLP benchmarks, making the model's output more aligned with diverse scenarios. However, in this work, we demonstrate that role-play also carries potential risks. We systematically evaluate the impact of role-play by asking the language model to adopt different roles and testing it on multiple benchmarks that contain stereotypical and harmful questions. Despite the significant fluctuations in the benchmark results in different experiments, we find that applying role-play often increases the overall likelihood of generating stereotypical and harmful outputs.