The Prophet Inequality and Pandora's Box problems are fundamental stochastic problem with applications in Mechanism Design, Online Algorithms, Stochastic Optimization, Optimal Stopping, and Operations Research. A usual assumption in these works is that the probability distributions of the $n$ underlying random variables are given as input to the algorithm. Since in practice these distributions need to be learned, we initiate the study of such stochastic problems in the Multi-Armed Bandits model. In the Multi-Armed Bandits model we interact with $n$ unknown distributions over $T$ rounds: in round $t$ we play a policy $x^{(t)}$ and receive a partial (bandit) feedback on the performance of $x^{(t)}$. The goal is to minimize the regret, which is the difference over $T$ rounds in the total value of the optimal algorithm that knows the distributions vs. the total value of our algorithm that learns the distributions from the partial feedback. Our main results give near-optimal $\tilde{O}(\mathsf{poly}(n)\sqrt{T})$ total regret algorithms for both Prophet Inequality and Pandora's Box. Our proofs proceed by maintaining confidence intervals on the unknown indices of the optimal policy. The exploration-exploitation tradeoff prevents us from directly refining these confidence intervals, so the main technique is to design a regret upper bound that is learnable while playing low-regret Bandit policies.