This work addresses the problem of unbalanced expert utilization in sparsely-gated Mixture of Expert (MoE) layers, embedded directly into convolutional neural networks. To enable a stable training process, we present both soft and hard constraint-based approaches. With hard constraints, the weights of certain experts are allowed to become zero, while soft constraints balance the contribution of experts with an additional auxiliary loss. As a result, soft constraints handle expert utilization better and support the expert specialization process, hard constraints mostly maintain generalized experts and increase the model performance for many applications. Our findings demonstrate that even with a single dataset and end-to-end training, experts can implicitly focus on individual sub-domains of the input space. Experts in the proposed models with MoE embeddings implicitly focus on distinct domains, even without suitable predefined datasets. As an example, experts trained for CIFAR-100 image classification specialize in recognizing different domains such as sea animals or flowers without previous data clustering. Experiments with RetinaNet and the COCO dataset further indicate that object detection experts can also specialize in detecting objects of distinct sizes.