Deep neural networks have been proven effective in a wide range of tasks. However, their high computational and memory costs make them impractical to deploy on resource-constrained devices. To address this issue, quantization schemes have been proposed to reduce the memory footprint and improve inference speed. While numerous quantization methods have been proposed, they lack systematic analysis for their effectiveness. To bridge this gap, we collect and improve existing quantization methods and propose a gold guideline for post-training quantization. We evaluate the effectiveness of our proposed method with two popular models, ResNet50 and MobileNetV2, on the ImageNet dataset. By following our guidelines, no accuracy degradation occurs even after directly quantizing the model to 8-bits without additional training. A quantization-aware training based on the guidelines can further improve the accuracy in lower-bits quantization. Moreover, we have integrated a multi-stage fine-tuning strategy that works harmoniously with existing pruning techniques to reduce costs even further. Remarkably, our results reveal that a quantized MobileNetV2 with 30\% sparsity actually surpasses the performance of the equivalent full-precision model, underscoring the effectiveness and resilience of our proposed scheme.