Backscatter communications (BC) has emerged as a promising technology for providing low-powered transmissions in nextG (i.e., beyond 5G) wireless networks. The fundamental idea of BC is the possibility of communications among wireless devices by using the existing ambient radio frequency signals. Non-orthogonal multiple access (NOMA) has recently attracted significant attention due to its high spectral efficiency and massive connectivity. This paper proposes a new optimization framework to minimize total transmit power of BC-NOMA cooperative vehicle-to-everything networks (V2XneT) while ensuring the quality of services. More specifically, the base station (BS) transmits a superimposed signal to its associated roadside units (RSUs) in the first time slot. Then the RSUs transmit the superimposed signal to their serving vehicles in the second time slot exploiting decode and forward protocol. A backscatter device (BD) in the coverage area of RSU also receives the superimposed signal and reflect it towards vehicles by modulating own information. Thus, the objective is to simultaneously optimize the transmit power of BS and RSUs along with reflection coefficient of BDs under perfect and imperfect channel state information. The problem of energy efficiency is formulated as non-convex and coupled on multiple optimization variables which makes it very complex and hard to solve. Therefore, we first transform and decouple the original problem into two sub-problems and then employ iterative sub-gradient method to obtain an efficient solution. Simulation results demonstrate that the proposed BC-NOMA V2XneT provides high energy efficiency than the conventional NOMA V2XneT without BC.