https://github.com/GrokCV/BAFE-Net.
Infrared small target detection poses unique challenges due to the scarcity of intrinsic target features and the abundance of similar background distractors. We argue that background semantics play a pivotal role in distinguishing visually similar objects for this task. To address this, we introduce a new task -- clustered infrared small target detection, and present DenseSIRST, a novel benchmark dataset that provides per-pixel semantic annotations for background regions, enabling the transition from sparse to dense target detection. Leveraging this dataset, we propose the Background-Aware Feature Exchange Network (BAFE-Net), which transforms the detection paradigm from a single task focused on the foreground to a multi-task architecture that jointly performs target detection and background semantic segmentation. BAFE-Net introduces a cross-task feature hard-exchange mechanism to embed target and background semantics between the two tasks. Furthermore, we propose the Background-Aware Gaussian Copy-Paste (BAG-CP) method, which selectively pastes small targets into sky regions during training, avoiding the creation of false alarm targets in complex non-sky backgrounds. Extensive experiments validate the effectiveness of BAG-CP and BAFE-Net in improving target detection accuracy while reducing false alarms. The DenseSIRST dataset, code, and trained models are available at