Dense retrievers and retrieval-augmented language models have been widely used in various NLP applications. Despite being designed to deliver reliable and secure outcomes, the vulnerability of retrievers to potential attacks remains unclear, raising concerns about their security. In this paper, we introduce a novel scenario where the attackers aim to covertly disseminate targeted misinformation, such as hate speech or advertisement, through a retrieval system. To achieve this, we propose a perilous backdoor attack triggered by grammar errors in dense passage retrieval. Our approach ensures that attacked models can function normally for standard queries but are manipulated to return passages specified by the attacker when users unintentionally make grammatical mistakes in their queries. Extensive experiments demonstrate the effectiveness and stealthiness of our proposed attack method. When a user query is error-free, our model consistently retrieves accurate information while effectively filtering out misinformation from the top-k results. However, when a query contains grammar errors, our system shows a significantly higher success rate in fetching the targeted content.