Although remarkable progress has been achieved in preventing large language model (LLM) hallucinations using instruction tuning and retrieval augmentation, it remains challenging to measure the reliability of LLMs using human-crafted evaluation data which is not available for many tasks and domains and could suffer from data leakage. Inspired by adversarial machine learning, this paper aims to develop a method of automatically generating evaluation data by appropriately modifying existing data on which LLMs behave faithfully. Specifically, this paper presents AutoDebug, an LLM-based framework to use prompting chaining to generate transferable adversarial attacks in the form of question-answering examples. We seek to understand the extent to which these examples trigger the hallucination behaviors of LLMs. We implement AutoDebug using ChatGPT and evaluate the resulting two variants of a popular open-domain question-answering dataset, Natural Questions (NQ), on a collection of open-source and proprietary LLMs under various prompting settings. Our generated evaluation data is human-readable and, as we show, humans can answer these modified questions well. Nevertheless, we observe pronounced accuracy drops across multiple LLMs including GPT-4. Our experimental results show that LLMs are likely to hallucinate in two categories of question-answering scenarios where (1) there are conflicts between knowledge given in the prompt and their parametric knowledge, or (2) the knowledge expressed in the prompt is complex. Finally, we find that the adversarial examples generated by our method are transferable across all considered LLMs. The examples generated by a small model can be used to debug a much larger model, making our approach cost-effective.