Sound event detection (SED) is one of tasks to automate function by human auditory system which listens and understands auditory scenes. Therefore, we were inspired to make SED recognize sound events in the way human auditory system does. Spectro-temporal receptive field (STRF), an approach to describe the relationship between perceived sound at ear and transformed neural response in the auditory cortex, is closely related to recognition of sound. In this work, we utilized STRF as a kernel of the first convolutional layer in SED model to extract neural response from input sound to make SED model similar to human auditory system. In addition, we constructed two-branched SED model named as Two Branch STRFNet (TB-STRFNet) composed of STRF branch and baseline branch. While STRF branch extracts sound event information from auditory neural response, baseline branch extracts sound event information directly from the mel spectrogram just as conventional SED models do. TB-STRFNet outperformed the DCASE baseline by 4.3% in terms of threshold-independent macro F1 score, achieving 4th rank in DCASE Challenge 2023 Task 4b. We further improved TB-STRFNet by applying frequency dynamic convolution (FDYConv) which also leveraged domain knowledge on acoustics. As a result, two branch model applied with FDYConv on both branches outperformed the DCASE baseline by 6.2% in terms of the same metric.