Algorithm selection aims to identify the most suitable algorithm for solving a specific problem before execution, which has become a critical process of the AutoML. Current mainstream algorithm selection techniques rely heavily on feature representations of various problems and employ the performance of each algorithm as supervised information. However, there is a significant research gap concerning the consideration of algorithm features. This gap is primarily attributed to the inherent complexity of algorithms, making it particularly challenging to find a universally effective feature extraction method that is applicable across a diverse range of algorithms. Unfortunately, neglecting this aspect undoubtedly impacts the accuracy of algorithm selection and indirectly necessitates an increased volume of problem data for training purposes. This paper takes a significant stride towards addressing this gap by proposing an approach that integrates algorithm representation into the algorithm selection process. Specifically, our proposed model employs distinct modules to extract representations of both problems and algorithms, where the algorithm representation leverages the capabilities of pre-trained LLMs in the realm of code comprehension. Following the extraction of embedding vectors for both algorithms and problems, the most suitable algorithm is determined through calculations of matching degrees. Our experiments not only validate the effectiveness of the proposed model but also showcase the performance of different embedded pre-trained LLMs, which suggests that the proposed algorithm selection framework holds the potential to serve as a baseline task for evaluating the code representation capabilities of LLMs.