In this paper, we provide an overview of a common phenomenon, condensation, observed during the nonlinear training of neural networks: During the nonlinear training of neural networks, neurons in the same layer tend to condense into groups with similar outputs. Empirical observations suggest that the number of condensed clusters of neurons in the same layer typically increases monotonically as training progresses. Neural networks with small weight initializations or Dropout optimization can facilitate this condensation process. We also examine the underlying mechanisms of condensation from the perspectives of training dynamics and the structure of the loss landscape. The condensation phenomenon offers valuable insights into the generalization abilities of neural networks and correlates to stronger reasoning abilities in transformer-based language models.