The completeness (in terms of content) of financial documents is a fundamental requirement for investment funds. To ensure completeness, financial regulators spend a huge amount of time for carefully checking every financial document based on the relevant content requirements, which prescribe the information types to be included in financial documents (e.g., the description of shares' issue conditions). Although several techniques have been proposed to automatically detect certain types of information in documents in various application domains, they provide limited support to help regulators automatically identify the text chunks related to financial information types, due to the complexity of financial documents and the diversity of the sentences characterizing an information type. In this paper, we propose FITI, an artificial intelligence (AI)-based method for tracing content requirements in financial documents. Given a new financial document, FITI selects a set of candidate sentences for efficient information type identification. Then, FITI uses a combination of rule-based and data-centric approaches, by leveraging information retrieval (IR) and machine learning (ML) techniques that analyze the words, sentences, and contexts related to an information type, to rank candidate sentences. Finally, using a list of indicator phrases related to each information type, a heuristic-based selector, which considers both the sentence ranking and the domain-specific phrases, determines a list of sentences corresponding to each information type. We evaluated FITI by assessing its effectiveness in tracing financial content requirements in 100 financial documents. Experimental results show that FITI provides accurate identification with average precision and recall values of 0.824 and 0.646, respectively. Furthermore, FITI can detect about 80% of missing information types in financial documents.