The variability and low signal-to-noise ratio in financial data, combined with the necessity for interpretability, make the alpha factor mining workflow a crucial component of quantitative investment. Transitioning from early manual extraction to genetic programming, the most advanced approach in this domain currently employs reinforcement learning to mine a set of combination factors with fixed weights. However, the performance of resultant alpha factors exhibits inconsistency, and the inflexibility of fixed factor weights proves insufficient in adapting to the dynamic nature of financial markets. To address this issue, this paper proposes a two-stage formulaic alpha generating framework AlphaForge, for alpha factor mining and factor combination. This framework employs a generative-predictive neural network to generate factors, leveraging the robust spatial exploration capabilities inherent in deep learning while concurrently preserving diversity. The combination model within the framework incorporates the temporal performance of factors for selection and dynamically adjusts the weights assigned to each component alpha factor. Experiments conducted on real-world datasets demonstrate that our proposed model outperforms contemporary benchmarks in formulaic alpha factor mining. Furthermore, our model exhibits a notable enhancement in portfolio returns within the realm of quantitative investment.