Vision Language Models (VLMs) are central to Visual Question Answering (VQA) systems and are typically deployed in the cloud due to their high computational demands. However, this cloud-only approach underutilizes edge computational resources and requires significant bandwidth for transmitting raw images. In this paper, we introduce an edge-cloud collaborative VQA system, called LLaVA-AlignedVQ, which features a novel Aligned Vector Quantization algorithm (AlignedVQ) that efficiently compress intermediate features without compromising accuracy to support partitioned execution. Our experiments demonstrate that LLaVA-AlignedVQ achieves approximately 1365x compression rate of intermediate features, reducing data transmission overhead by 96.8% compared to transmitting JPEG90-compressed images to the cloud. LLaVA-AlignedVQ achieves an inference speedup of 2-15x while maintaining high accuracy, remaining within -2.23% to +1.6% of the original model's accuracy performance across eight VQA datasets, compared to the cloud-only solution.