Combining the classical Kalman filter (KF) with a deep neural network (DNN) enables tracking in partially known state space (SS) models. A major limitation of current DNN-aided designs stems from the need to train them to filter data originating from a specific distribution and underlying SS model. Consequently, changes in the model parameters may require lengthy retraining. While the KF adapts through parameter tuning, the black-box nature of DNNs makes identifying tunable components difficult. Hence, we propose Adaptive KalmanNet (AKNet), a DNN-aided KF that can adapt to changes in the SS model without retraining. Inspired by recent advances in large language model fine-tuning paradigms, AKNet uses a compact hypernetwork to generate context-dependent modulation weights. Numerical evaluation shows that AKNet provides consistent state estimation performance across a continuous range of noise distributions, even when trained using data from limited noise settings.