Actual causality and a closely related concept of responsibility attribution are central to accountable decision making. Actual causality focuses on specific outcomes and aims to identify decisions (actions) that were critical in realizing an outcome of interest. Responsibility attribution is complementary and aims to identify the extent to which decision makers (agents) are responsible for this outcome. In this paper, we study these concepts under a widely used framework for multi-agent sequential decision making under uncertainty: decentralized partially observable Markov decision processes (Dec-POMDPs). Following recent works in RL that show correspondence between POMDPs and Structural Causal Models (SCMs), we first establish a connection between Dec-POMDPs and SCMs. This connection enables us to utilize a language for describing actual causality from prior work and study existing definitions of actual causality in Dec-POMDPs. Given that some of the well-known definitions may lead to counter-intuitive actual causes, we introduce a novel definition that more explicitly accounts for causal dependencies between agents' actions. We then turn to responsibility attribution based on actual causality, where we argue that in ascribing responsibility to an agent it is important to consider both the number of actual causes in which the agent participates, as well as its ability to manipulate its own degree of responsibility. Motivated by these arguments we introduce a family of responsibility attribution methods that extends prior work, while accounting for the aforementioned considerations. Finally, through a simulation-based experiment, we compare different definitions of actual causality and responsibility attribution methods. The empirical results demonstrate the qualitative difference between the considered definitions of actual causality and their impact on attributed responsibility.