In this paper we study a convex-concave saddle-point problem $\min_x\max_y f(x) + y^\top\mathbf{A} x - g(y)$, where $f(x)$ and $g(y)$ are smooth and convex functions. We propose an Accelerated Primal-Dual Gradient Method for solving this problem which (i) achieves an optimal linear convergence rate in the strongly-convex-strongly-concave regime matching the lower complexity bound (Zhang et al., 2021) and (ii) achieves an accelerated linear convergence rate in the case when only one of the functions $f(x)$ and $g(y)$ is strongly convex or even none of them are. Finally, we obtain a linearly-convergent algorithm for the general smooth and convex-concave saddle point problem $\min_x\max_y F(x,y)$ without requirement of strong convexity or strong concavity.