The idea of decision-aware model learning, that models should be accurate where it matters for decision-making, has gained prominence in model-based reinforcement learning. While promising theoretical results have been established, the empirical performance of algorithms leveraging a decision-aware loss has been lacking, especially in continuous control problems. In this paper, we present a study on the necessary components for decision-aware reinforcement learning models and we showcase design choices that enable well-performing algorithms. To this end, we provide a theoretical and empirical investigation into prominent algorithmic ideas in the field. We highlight that empirical design decisions established in the MuZero line of works are vital to achieving good performance for related algorithms, and we showcase differences in behavior between different instantiations of value-aware algorithms in stochastic environments. Using these insights, we propose the Latent Model-Based Decision-Aware Actor-Critic framework ($\lambda$-AC) for decision-aware model-based reinforcement learning in continuous state-spaces and highlight important design choices in different environments.